Journal of Organometallic Chemistry, 268 (1984) 213–222 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PHOSPHINSUBSTITUIERTE CHELATLIGANDEN

XI *. NMR-SPEKTROSKOPISCHE UNTERSUCHUNGEN (¹H, ¹³C, ³¹P, ⁵⁵Mn) AN HALOGENTRICARBONYLMANGAN-CHELATKOMPLEXEN MIT PHOSPHINO-THIOFORMAMID- UND -THIOFORMIMIDOESTER-LIGANDEN

U. KUNZE*, A. BRUNS

Institut für Anorganische Chemie der Universitat Tübingen, D-7400 Tübingen (B.R.D.)

und D. REHDER

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, D-2000 Hamburg 13 (B.R.D.) (Eingegangen den 13. Februar 1984)

Summary

A series of halotricarbonylmanganese chelate complexes, fac-(CO)₃Mn(X)L (X = Cl (a), Br (b), I (c)), with thioformamide (L = Ph₂PC(S)NRMe; R = H (1), Me (2), Ph (3)) and the isomeric thioformimidoester (L = Ph₂PC(NR)SMe; R = Me (4), Ph (5)) ligands were prepared by thermal CO substitution of the pentacarbonylmanganese halides. The IR and NMR data indicate *P*, *S*-coordination of the ambidentate ligands and uniform *Z* configuration in 3–5. Due to the large linewidth of the NMR signals, the ⁴J(PH) and ³J(PC) coupling constants could not be determined for the thioamide complexes 1–3. Coordination of the thioimide 4 causes an increase in ⁴J(PH) whereas ³J(PC) remains unchanged. δ (³¹P) shows a downfield coordination shift as usual for manganese complexes. The broad ⁵⁵Mn NMR signals cover a range of +90 to -730 ppm (rel. KMnO₄) with the imidoester complexes 4 and 5 at the low-field side. The normal halogen dependence Cl < Br < I is observed for ⁵⁵Mn shielding.

Zusammenfassung

Eine Reihe von Halogentricarbonylmangan-Chelatkomplexen, fac-(CO)₃Mn(X)L (X = Cl (a), Br (b), I (c)), mit Thioformamid- (L = Ph₂PC(S)NRMe; R = H (1), Me (2), Ph (3)) und den isomeren Thioformimidoester-Liganden (L = Ph₂PC(NR)SMe; R = Me (4), Ph (5)) wurde durch thermische CO-Substitution der Pentacarbonyl-

^{*} X. Mitteilung siehe Ref. 1.

mangan-halogenide dargestellt. Die IR- und NMR-Spektren belegen die *P*, *S*-Koordination der ambidenten Liganden und einheitliche Z-Konfiguration in 3–5. Aufgrund der grossen Linienbreite der NMR-Signale lassen sich keine ⁴*J*(PH)- und ³*J*(PC)-Kopplungen für die Thioamid-Komplexe 1–3 nachweisen. Die Koordination des Thioimids 4 verursacht eine Zunahme von ⁴*J*(PH), während ³*J*(PC) unverändert bleibt. δ (³¹P) zeigt die für Mangankomplexe übliche Koordinationsverschiebung nach tiefem Feld. Die breiten ⁵⁵Mn-NMR-Signale erstrecken sich über einen Bereich von +90 bis – 730 ppm (rel. KMnO₄) mit den Imidoester-Komplexen 4 und 5 auf der Tieffeld-Seite. Für die Abschirmung des ⁵⁵Mn-Kerns wird die normale Halogenabhängigkeit Cl < Br < I beobachtet.

Einleitung

Die Koordinationschemie sekundärer Phosphino-thioformamide und der davon abgeleiteten Thioformimidat-Anionen wurde in den letzten Jahren eingehend untersucht [2-9]. Bei Metallen in niedrigen Oxidationsstufen ist die *P*, *S*-Chelatfunktion (I) der ambidenten Ligandensysteme die Regel [7].

Die P, N-Bindung (II) wurde bisher garnicht, die S, N-Koordination (III) nur mit fünfbindigem Phosphor [3] und in Mehrkern-Komplexen [4] beobachtet.

Während koordinierte Thioformimidat-Anionen sterisch einheitlich vorliegen und leicht interpretierbare NMR-Spektren vom Heteroallyl-Typus ergeben, zeigen die neutralen Thioformamid-Komplexe dynamische Effekte, die noch nicht befriedigend geklärt sind [8]. Wir haben nun das komplexchemische Verhalten der von uns kürzlich dargestellten tertiären Phosphino-thioformamide und der isomeren Thioformimidoester [10] untersucht und berichten über die NMR-spektroskopischen Eigenschaften der Mangantricarbonyl-Komplexe. Unser besonderes Interesse gilt dabei den ⁵⁵Mn-NMR-Parametern im Vergleich mit einer früheren Arbeit [11].

1. Darstellung und Eigenschaften

Durch Umsetzung der Pentacarbonylmangan-halogenide $XMn(CO)_5$ (X = Cl, Br, I) mit den Phosphino-thioformamiden $Ph_2PC(S)NMeR$ (R = H, Me, Ph) in THF erhält man in guter Ausbeute die facialen Tricarbonylkomplexe **1a-1c** bis **3a-3c**:

	X =	СІ	Br	I
OC P Me	R = H	1 a	1 b	1 c
	Me	2 a	2 b	2c
X	Ph	3 a	Зb	Зc

TABELLE 1

Verbindung	v(CO); CHCl ₃ -Lsg.	v(CO); fest, KBr	$\nu_1(NCS)^{b}$	ν ₂ (NCS) ^{<i>b</i>}
1a	2025vs, 1942s, 1925ms	(2034vs, 1960s, 1926vs)	1562s	1372m
1b	2025vs, 1950s, 1912ms	(2033vs, 1962s, 1927vs)	1558s	1364m
1c	2025vs, 1957s, 1922ms	(2010vs, 1960s, 1918vs)	1550s	1370m
2a	2034vs, 1962s, 1922ms	(2010vs, 1941s, 1917vs)	1550m	1400m
2Ь	2028vs, 1960s, 1920ms	(2005vs, 1930vs, 1918vs)	1549m	1384m
2c	2025vs, 1958s, 1921ms	(2005vs, 1940s, 1910vs)	1545m	1400m
3a	2030vs, 1958s, 1921ms	(2020vs, 1935s, 1915vs)	1513m	1400m
3b	2028vs, 1958s, 1922ms	(2020vs, 1938s, 1917vs)	1511m	1400m
3c	2023vs, 1956s, 1922ms	(2019vs, 1933/1950s, 1909vs)	1500m	1400m
4a	2032vs, 1959s, 1919ms	(2020vs, 1935vs, 1905/1885vs)	1538mw	
4b	2031vs, 1960s, 1922ms	(2019vs, 1936vs, 1905/1887vs)	1538mw	
4c	2025vs, 1955s, 1921ms	(2018vs, 1935vs, 1906/1887vs)	1536mw	
5a	2035vs, 1963s, 1923ms	(2020vs, 1947vs, 1910/1900vs)	1535mw	
5b	2034vs, 1963s, 1923ms	(2020vs, 1947vs, 1915/1900vs)	1531mw	
5c	2029vs, 1959s, 1922ms	(2010vs, 1940vs, 1900vs)	1521mw	

IR-DATEN DER VERBINDUNGEN 1a-1c BIS 5a-5c^a (cm⁻¹)

" IR-Daten von 1a, 1b entnommen aus Lit. 7 und 12. ^b Fest, KBr.

Die teilweise schon früher beschriebenen [7] sekundären Thioamid-Komplexe 1a-1c tendieren in Lösung zur Abspaltung von HX (Beschleunigung durch Basezusatz) und Bildung der Tetracarbonyl-Stufe. 2a-2c und 3a-3c werden aus Methylenchlorid umkristallisiert und sind in festem Zustand luftstabil. Die gelb-orangen, kristallinen Verbindungen lösen sich in polaren Solvenzien mässig.

Lage und Intensitätsverteilung der CO-Valenzabsorptionen (Tab. 1) bestätigen die einheitliche, faciale Konfiguration des Metallgerüstes. Infolge der Asymmetrie des Moleküls sind alle drei Normalschwingungen IR-aktiv. In **1a-1c** und **2a-2c** erscheint ν_1 (NCS) fast im Bereich einer C=N-Doppelbindung. Die Aufpolarisierung des Thioamid-Strukturelements im Sinne N=C-S⁻ lässt sich kristallographisch belegen [12-14]. In den N-Phenyl-Komplexen **3a-3c** ist der Mehrfachbindungsanteil geringer. Die Koordinationsverschiebungen liegen für sekundäre und tertiäre Thioamid-Komplexe in der gleichen Grössenordnung, so dass in beiden Fällen von der P, S-Koordination der Liganden auszugehen ist.

Die fac-Tricarbonylkomplexe 4a-4c und 5a-5c mit den bindungsisomeren Imidoester-Liganden entstehen unter den gleichen Bedingungen wie 1a-1c bis 3a-3c, aber mit längerer Reaktionszeit. 4c und 5c sind identisch mit den durch Methylierung der Tetracarbonylkomplexe $(CO)_4$ MnSC(NR)PPh₂ erhaltenen Verbindungen [12]. Die gelben bis orangen Komplexe 4a-4c und 5a-5c sind luftstabil, in Lösung erfolgt allmählich Abdissoziation des Liganden.

Lage und Intensitäten der CO-Valenzschwingungsbanden von 4a-4c und 5a-5csind fast die gleichen wie in 1a-1c bis 3a-3c, so dass auch für Imidoester die *P*,*S*-Chelatfunktion anzunehmen ist. Wie bei Komplexen mit anionischem Thioformimidat-Liganden [7] tritt im Thioamid-B,C-Bereich [15] nur eine charakteristische Absorption auf. Im Gegensatz zu 1a-1c bis 3a-3c ist die $\nu(C=N)$ -Frequenz in 4a-4c und 5a-5c auf ein Intervall von 1520–1540 cm⁻¹ nivelliert. Erstaunlicher noch ist die Tatsache, dass in 4a-4c und $5a-5c \nu(C=N)$ gegenüber den freien Liganden [1] um 30–40 cm⁻¹ langwellig verschoben erscheint. Die Koordinationsverschiebung verläuft also in umgekehrter Richtung wie bei den Thioamid-Komplexen. Dies wird durch den unterschiedlichen Polarisierungseffekt bei der Koordination des Amid- bzw. Imid-Bindungssystems verständlich.

2. ¹H-, ¹³C-, ³¹P-NMR-Spektren

Die ¹H-NMR-Spektren (Tab. 2) der Mangankomplexe 1–5 weisen für die Signallage der *cis*- und *trans*-ständigen *N*-Methylgruppen (bezogen auf Phosphor) unterschiedliche Trends im Vergleich zu den freien Liganden auf. Für das *trans*-Me-

	¹ H-NMR ^{<i>b</i>}			¹³ C{ ¹ H}-NMF	$^{31}P{^{1}H}$ -		
	$\overline{\delta(N-CH_3)}_c$	$\delta(N-CH_3)_t$	$\delta(S-CH_3)$	$\delta(N-CH_3)_{c/l}$	$\delta(S-CH_3)$	δ(C=S)	NMR ²
a		3.34 s					37 s
b		3.34 s		32.4 s (<i>t</i>)		208.6 d ^c ¹ J(PC) 30.0	36 s
c		3.33 s					35 s
a	3.52 s	3.05 s					48 s
b	3.50 s	3.04 s		44.1 s (c) 42.7 s (t)			46 s
c	3.47 s	3.04 s		45.6 s (c) 42.7 s (t)		202.9 d ^f ¹ J(PC) 37.5	44 s
8	3.90 s						50 s
b	3.92 s						50 s
c	3.75 s						49 s
A		3.58 d ⁴J(PH) 2.35	2.13 s				20 s
Ь		3.57 d ⁴J(PH) 2.69	2.13 s	46.9 d (<i>t</i>) ³ J(PC) 21.6	15.4 s	181.6 d ¹ J(PC) 20.0	17 s
c		3.52 d ⁴ J(PH) 2.98	2.13 s				14 s
a			1.95 s				21 s
b			1.94 s		16.5 s		19 s
c			1.93 s		16.6 s		17 s

TABELLE 2

¹H-, ¹³C{¹H}- UND ³¹P{¹H}-NMR-DATEN DER VERBINDUNGEN 1a-1c BIS 5a-5c "

^{*a*} NMR-Daten von **1a**, **1b** teilweise entnommen aus Lit. 7 und 12. ^{*b*} CDCl₃-Lsg., int. TMS-Standard, δ (ppm), |J| (Hz), c = cis-P, t = trans-P. ^{*c*} wie ^{*b*}; aufgrund der schlechten Löslichkeit wurden nicht von allen Verbindungen ¹³C-NMR-Spektren erhalten. ^{*d*} THF-Losung, ext. H₃PO₄-Standard, δ (ppm). ^{*e*} Aceton- d_6 -Lsg., -40° C. ^{*f*} THF- d_8 -Lsg.

thylsignal in 2a-2c beobachtet man eine stärkere Abschirmung, die einen vergrösserten Signalabstand der cis- und trans-Methylgruppe bedingt. Die damit verbundene Erhöhung der Rotationsbarriere konnte experimentell belegt werden. Im Unterschied zum freien Liganden [1] (T_c 85°C, ΔG^{\neq} 76.6 kJ mol⁻¹) zeigt der Komplex **2b** bis 82°C keine Koaleszenz der N-Methylsignale; weitere Temperaturerhöhung führt zu Liganddissoziation und Zersetzung. Die Ermittlung der Ligandenkonfiguration in den Thioamid-Komplexen 1-3 wird durch die nicht beobachteten Fernkopplungen erschwert. Die Halbwertsbreite der N-Methylsignale (Lsg. CDCl₃) beträgt im ¹H-NMR-Spektrum etwa 2 Hz, im ¹³C-NMR-Spektrum über 5 Hz. Auch die Benzolverdünnungsmethode [1] versagt hier, da die Signalverschiebung für die cisund *trans*-Methylgruppen fast gleich ausfällt. Andererseits gibt es keinen Hinweis, dass sich die Konfiguration der freien Liganden bei der Komplexierung ändert, so dass eine Analogzuordnung vernünftig erscheint. Die ¹H-NMR-Spektren der sekundären Thioamid-Komplexe 1a-1c sind lösungsmittelabhängig. In CDCl₃ ist die vicinale Kopplung ${}^{3}J(CH-NH)$ bei Raumtemperatur noch aufgelöst, während in Aceton- d_6 selbst bei tiefen Temperaturen nur ein Singulett auftritt.

Bei Erhöhung der Koordinationszahl des Phosphors durch Oxidation oder Schwefelung fanden wir eine geringe Zunahme von ${}^{4}J(PH)$ [8,13], aber eine drastische Abnahme und Nivellierung von *cis-*, *trans-* ${}^{3}J(PC)$ für die *N*, *N*-Dimethylverbindungen Ph₂P(X)C(S)NMe₂ (X = O, S) [13]. In den entsprechenden *N*-Methyl-*N*-phenylderivaten ist keine ${}^{3}J(PC)$ -Kopplung mehr nachzuweisen [1]. Es ist daher anzunehmen, dass in **1a-1c** bis **3a-3c** die Beträge der Fernkopplungskonstanten kleiner als die mittlere Linienbreite sind und nicht mehr aufgelöst werden. In den ¹H-NMR-Spektren der Imidoester-Komplexe **4a-4c** beobachtet man dagegen eine starke Zunahme der Fernkopplung ${}^{4}J(PH)$ im Vergleich zum freien Liganden, während ${}^{3}J(PC)$ etwa gleich bleibt. Denselben Effekt haben wir bei den P=S-Derivaten der Imidoester gefunden [1]. Generell scheinen also die Kopplungseffekte auf Koordinationserweiterung des Phosphors zurückzuführen zu sein, unabhängig davon, ob diese durch Oxidation oder Komplexierung erfolgt.

Die ³¹P-NMR-Spektren von 1–5 zeigen die erwartete Koordinationsverschiebung von 20–30 ppm nach tiefem Feld [7]. Die Signallage weist in der Reihenfolge Cl < Br < I eine geringfügige Zunahme der Abschirmung auf (vgl. Abschnitt 3).

3. 55 Mn-NMR-Spektren

Wir haben kürzlich gezeigt [11], dass die ⁵⁵Mn-chemische Verschiebung von Carbonylmangan-Chelatkomplexen mit Dithioformiato-, Thioformimidato- und Thioformamid-Liganden als Kriterium zur Unterscheidung zwischen der Koordination (S, S' oder S, P) und der Ringgrösse (4- oder 5-Ring) herangezogen werden kann. So ist der ⁵⁵Mn-Kern in viergliedrigen Strukturen mit S, S'- gegenüber solchen mit S, P-Koordination $(Mn(CO)_4S_2CNR_2 \text{ bzw. }Mn(CO)_4SC(NR)PPh_2)$ um ca. 500 ppm entschirmt.

Trotz der engen Verwandtschaft der in dieser Arbeit beschriebenen Komplexe (Vierringsysteme mit S, P-Koordination) findet man Variationen der δ (⁵⁵Mn)-Werte über 800 ppm (Tab. 3). Dies ist ein deutlicher Hinweis darauf, dass relativ geringe Veränderungen (z.B. durch Variation des Halogens) innerhalb einer Verbindungsklasse einen vergleichbaren Effekt verursachen können wie die Änderung der In unserer früheren Mitteilung [11] haben wir berichtet, dass der Bromotricarbonylmangan-Komplex 1b eine Resonanz bei -1570 ppm und ein weiteres, breites Signal um -500 ppm zeigt. Die intensivere Untersuchung der Gruppe der Thioformamid-Komplexe ergibt nun, dass in Wirklichkeit das Tieffeld-Signal dem Komplex 1b entspricht, während die Resonanz bei -1570 ppm eine "Verunreinigung", nämlich Mn(CO)₄SC(NMe)PPh₂, anzeigt (vgl. Abschnitt 1). Figur 1 gibt das ⁵⁵Mn-NMR-Spektrum eines Gemisches beider Komplexe wieder, das beim mehrstündigen Erwärmen einer Lösung von 1b in CHCl₃ entsteht.

Die Verwendung des Parameters $\delta({}^{55}Mn)$ zur Unterscheidung zwischen verschiedenen Koordinationsformen und Chelatringgrössen ist also beschränkt auf Komplexe, die untereinander hinreichend ähnlich sind. Unter Einbeziehung der in Lit. 11 veröffentlichten Daten können wir zwischen den folgenden Klassen unterscheiden (die Anordnung erfolgt nach abnehmender Abschirmung des ⁵⁵Mn-Kerns):

Komplex	x	······	δ(⁵⁵ Mn) (ppm)		
			Lsg. THF	Lsg. CH ₂ Cl ₂	
Ph ₂	Cl	(1a)	Ь	- 190(30)	
X(CO), MD	Вг	(1b)	- 395(15)	- 325(25)	
S Me	I	(1c)	b	- 600(25)	
Ph ₂	Cl	(2 a)	- 360(25)	- 380(30)	
	Br	(2b)	-500(20)	- 460(30)	
Me	1	(2c)	- 730(15)	-610(25)	
Ph ₂	Cl	(3a)	- 420(30)	- 370(20)	
	Br	(3b)	- 400(50)	- 390(40)	
s Ph	I	(3c)	-710(30)	600(25)	
Ph ₂	Cl	(4 a)	- 10(15)	+ 40(10)	
	Br	(4b)	- 80(25)	- 50(10)	
Me Me	I	(4c)	- 270(10)	$-190(10)^{d}$	
Ph2	Cl	(5a)	+ 70(10)	+ 90(10)	
	Br	(5b)	-30(10)	+30(10)	
Me Ph	1	(5c)	-170(25)	- 140(10)	

TABELLE 3 CHEMISCHE VERSCHIEBUNG δ(⁵⁵Mn) RELATIV ZU KMnO. /H₂O."

^{*a*} Ca. 0.05 bis 1.5 molare bzw. gesättigte Losung für 1, 2a, 2b, 3 (in THF) und 5 (in CH₂Cl₂). Weitere Angaben s. Erläuterungen zu Fig. 1. Absolute Fehler sind in Klammern gesetzt. ^{*b*} Wegen zu geringer Löslichkeit keine auswertbaren Signale. ^{*c*} Vergl. Fig. 1. ^{*d*} Die Peak-zu-Peak-Breite beträgt 1.9(0.2) kHz.

(1)
$$(CO)_4 Mn \begin{pmatrix} S \\ P \\ Ph_2 \end{pmatrix} C = Y (Y = NR, S) - 1620 \text{ bis } -1450 \text{ ppm}$$

(II)
$$(CO)_4 Mn \Big|_{S = PR_2} - 1150 \text{ bis} - 980 \text{ ppm}$$

(III)
$$(CO)_4 Mn < S < C - Z (Z = NR_2, OR, SR) - 1035 bis - 780 ppm$$

(IV)
$$X(CO)_{3}Mn \xrightarrow{S}_{P_{2}}C - NR_{2}$$
 (1-3) - 730 bis - 190 ppm
(V) $X(CO)_{3}Mn \xrightarrow{S}_{P_{2}}C = NR$ (4,5) - 270 bis + 70 ppm

R2

Für die drastische Abnahme der Abschirmung am ⁵⁵Mn-Kern bei der CO-Substitution von Komplexen der Gruppe (I) durch ein Halogen (IV und V) gibt es einige Parallelen bei Carbonylkomplexen anderer Übergangsmetalle. Beispiele sind $[Mn(CO)_5PHPh_2]^+$ (-1710 ppm [16]) und MnBr(CO)₄PHCy₂ (-1290 [11]), ⁵¹V(η -C₅H₅)(CO)₄ (-1554) und $[VBr(\eta$ -C₅H₅)(CO)₃]⁻ (-578) [17], ⁹⁵Mo(CO)₆ (-1857) und $[MoBr(CO)_5]^-$ (-1540) [18]. Die gleichzeitige Substitution des anionischen Thioformimidat-Liganden (Gruppe I) durch das neutrale Thioformamid (IV) oder den Thioformimidoester (V) führt zu einer zusätzlichen Entschirmung. Der Aus-

Fig. 1. ⁵⁵Mn-NMR-Spektrum (1. Ableitung) eines Gemisches von $MnBr(CO)_3SC(NHMe)PPh_2$ (**1b**) (links) und $Mn(CO)_4SC(NMe)PPh_2$ (rechts) in CH₂Cl₂ (ca. 0.1 *M*, Proben-Durchmesser 14 mm, 302(1) K, 345 Durchläufe). Das Spektrum wurde an einem Bruker SWL 3-100 Breitlinien-Spektrometer bei 11.2 MHz und einem zentralen Magnetfeld von 1.0440 T aufgenommen. Der Standard (S), eine gesättigte wässrige Lösung von KMnO₄, liegt bei 1.04304 T. Die Modulationsamplitude beträgt 0.25 mT.

tausch der beiden neutralen, S, P-gebundenen Liganden (Gruppe IV bzw. V) gegeneinander hat einen deutlichen Einfluss auf δ ⁽⁵⁵Mn).

Der augenfälligste Effekt ist aber die Zunahme der ⁵⁵Mn-Abschirmung in der Reihe Cl < Br < I, wobei der Schritt von den Bromo- zu den Iodokomplexen im Schnitt doppelt so gross ist wie der von den Chloro- zu den Bromokomplexen. Dieser, von Kidd [19] als normale Halogenabhängigkeit ("normal halogen dependence") bezeichnete, Einfluss des Halogens auf die Abschirmung des Metallkerns wird in nahezu allen Übergangsmetallkomplexen mit nicht abgeschlossener *d*-Schale des zentralen Metallions (im vorliegenden Falle *d*⁶) beobachtet [20], so unter anderem für MnX(CO)₅ (δ (⁵⁵Mn) – 1104 (X = Cl), –1160 (X = Br), –1485 (X = I)) [21], [⁵¹VX(η -C₅H₅)(CO)₃]⁻ [17] und VX(CNR)₃(NO)₂ [22], ⁹⁵MoX(η -C₅H₅)(CO)₃ [23], ⁵⁷FeX(η -C₅H₅)(CO)₂ [24], [⁵⁹CoX(NH₃)₅]²⁺ [25] und [CoX(NO)₂]₂ [26]. Diese Trends können dadurch erklärt werden, dass der paramagnetische Entschirmungsbeitrag zur Gesamtabschirmung mit zunehmender Kovalenz der Metall– Halogen-Bindung (zunehmender Polarisierbarkeit von X) abnimmt [17,20,27].

Ferner wird ein weniger auffälliger Einfluss der Substituenten R am Stickstoff bei einigen Verbindungen der Gruppe IV (1a, 1b, 2a, 2b) beobachtet. So nimmt die ⁵⁵Mn-Abschirmung zu, wenn NHMe durch NMe₂ ausgetauscht wird. Dieser Effekt ist in den Chlorokomplexen 1a und 2a stärker ausgeprägt als bei den Bromokomplexen (1b, 2b) und fehlt völlig in den Iodverbindungen (1c, 2c). Auch die Substitution von NPh durch NMe in Gruppe V (4a-4c, 5a-5c) führt zu einer Zunahme von δ (⁵⁵Mn). Dieser "long-range"-Effekt sollte einen deutlichen Hinweis darauf geben, dass die NR₂- bzw. NR-Gruppe an der Gesamtverteilung der Elektronen im Metallacyclus massgeblich beteiligt ist. Weiterhin wird in den meisten Fällen in THF eine grössere Abschirmung beobachtet als in CH₂Cl₂; dieser Lösungsmitteleffekt kann bis zu 120 ppm (2c) betragen.

Da der Kern ⁵⁵Mn (I = 5/2) über ein Quadrupolmoment ($Q = 0.4 \times 10^{-28} \text{ m}^2$) verfügt und sich in nicht-kubischer Umgebung befindet, sind die Kernresonanzsignale im allgemeinen sehr breit und nicht ausdifferenziert. Für die Linienbreiten gibt es aber keine so schlüssigen Trends wie für die chemische Verschiebung. Die Signale der Komplexreihen 4a-4c und 5a-5c (ca. 2 kHz Peak-zu-Peak-Abstand der 1. Ableitung) sind allerdings deutlich schmaler als die der Reihen 1a-1c bis 3a-3c (5 kHz und mehr; vgl. Abschnitt 2). CH₂Cl₂-Lösungen zeigen meist schärfere Signale als THF-Lösungen, und Chlorokomplexe ergeben breitere Signale als Iodokomplexe.

Experimenteller Teil

Alle Umsetzungen wurden unter Stickstoff-Atmosphäre in getrockneten Lösungsmitteln durchgeführt. Die sekundären und tertiären Phosphino-thioformamide sowie die Phosphino-thioformimidoester wurden nach bereits beschriebenen Verfahren dargestellt [1,10,28]. Die Metallcarbonylhalogenide erhielten wir aus den Metallcarbonylen nach Literaturmethoden [29]. Sämtliche Umsetzungen wurden IR-spektroskopisch auf ihre Vollständigkeit hin kontrolliert. Bei den Chloromangan-Komplexen ist besonders auf genaues Einhalten der Temperatur zu achten, da oberhalb der angegebenen Werte Zersetzungsgefahr besteht.

IR: Perkin-Elmer Infrarot-Spektralphotometer 598 mit Datenstation 3600. NMR: Bruker WP 80 Multikernspektrometer. MS: Varian MAT 711 A (FD-Methode, 8 kV). Darstellung der sekundären Phosphino-thioformamid-Komplexe 1a-1c

Sie erfolgte nach bekannten Verfahren [7,12]. Der dort nicht beschriebene Iodomangan-Komplex 1c wurde analog dargestellt.

Darstellung der tertiären Phosphino-thioformamid-Komplexe 2a-2c und 3a-3c

Eine Lösung von 1.5-4.5 mmol des tertiären Phosphino-thioformamids (Ph₂PC(S)NMeR, R = Me, Ph) in 40 ml THF wird innerhalb 1 h zur äquimolaren Menge Carbonylmangan-halogenid (Mn(CO)₅X, X = Cl, Br, I) in 70 ml THF getropft, dabei ist spontane CO-Abspaltung zu beobachten. Die Lösung wird bei der angegebenen Temperatur weiter gerührt, bis sich IR-spektroskopisch die Vollständigkeit der Reaktion feststellen lässt (Reaktionszeit und -temperatur: X = Cl: 40° C, 2-3 h; X = Br: 50° C, 1.5-2 h; X = I: $60-65^{\circ}$ C, 2.5-5 h). Die intensiv gelbe (X = Cl) bis tief orangefarbene (X = I) Lösung wird zur Trockene eingeengt und **2a-2c** bis **3a-3c** durch Umkristallisation aus CH₂Cl₂ und anschliessendes Waschen mit n-Hexan kristallin isoliert.

Darstellung der Phosphino-thioformimidoester-Komplexe 4a-4c und 5a-5c

Sie erfolgt analog wie für 2a-2c und 3a-3c beschrieben mit den entsprechenden

TABELLE 4

Verbindung	Molmasse (Gef. (ber.)) ^a	Analysen (Gef. (ber.) (%))					Ausbeute	Smp. (°C)
		C	Н	N	S	X *	(%)	(Zers.)
2a	447	48.05	3.57	3.09	7.04	8.29	47	172-175
	(447.76)	(48.28)	(3.60)	(3.13)	(7.16)	(7.92)		
2b	491	44.14	3.41	2.94	6.78	16.04	40	177-179
	(492.22)	(43.92)	(3.28)	(2.85)	(6.51)	(16.23)		
2c	539	39.87	2.92	2.56	6.33	22.80	52	139-141
	(539.21)	(40.10)	(2.99)	(2.60)	(5.95)	(23.53)		
3a	509	54.41	3.74	2.68	6.35	7.17	62	125128
	(509.83)	(54.19)	(3.56)	(2.75)	(6.29)	(6.95)		
3b	553	50.10	3.48	2.60	5.93	14.79	52	120-123
	(554.29)	(49.84)	(3.27)	(2.53)	(5.78)	(14.42)		
3c	601	46.15	3.30	2.36	5.71	21.49	63	105-108
	(601.28)	(45.94)	(3.02)	(2.33)	(5.33)	(21.11)		
4a	447	48.31	3.73	3.11	6.80	7.89	65	115-118
	(447.76)	(48.29)	(3.60)	(3.13)	(7.16)	(7.92)		
4b	491	43.68	3.25	2.81	6.67	16.65	61	126-129
	(492.22)	(43.92)	(3.28)	(2.85)	(6.51)	(16.23)		
4c	539	40.37	3.17	2.65	6.16	24.10	41	136-140
	(539.21)	(40.10)	(2.99)	(2.60)	(5.95)	(23.53)		
5a	509	54.32	3.78	2.79	6.54	7.24	53	125-128
	(509.82)	(54.19)	(3.56)	(2.75)	(6.29)	(6.95)		
5b	553	50.02	3.53	2.57	6.17	14.75	46	150-153
	(554.29)	(49.84)	(3.27)	(2.53)	(5.78)	(14.42)		
5c	601	46.21	3.13	2.41	5.47	20.89	51	163-166
	(601.28)	(45.94)	(3.02)	(2.33)	(5.33)	(21.11)		

MOLMASSEN, ANALYTISCHE DATEN, AUSBEUTEN UND SCHMELZPUNKTE DER VERBINDUNGEN 2a-2c BIS 5a-5c

^a MS, FD-Methode, bezogen auf ⁵⁵Mn, ³⁵Cl, ⁷⁹Br, ¹²⁷I. ^b X = Cl (a), Br (b), I (c).

Phosphino-thioformimidoester-Liganden (Ph₂PC(NR)SMe, R = Me, Ph) und angepassten Reaktionszeiten und -temperaturen (X = Cl: 40-45°C, 4-7 h; X = Br: 60°C, 6-7 h; X = I: Rückfluss, 5-8 h).

Die analytischen Daten von 2a-2c bis 5a-5c sind in Tab. 4 zusammengestellt.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie für die finanzielle Förderung dieser Arbeit.

Literatur

- 1 U. Kunze, A. Bruns, W. Hiller und J. Mohyla, Chem. Ber., im Druck.
- 2 H.P.M.M. Ambrosius, A.H.I.M. van der Linden und J.J. Steggerda, J. Organomet. Chem., 204 (1980) 211.
- 3 H.P.M.M. Ambrosius, W.P. Bosman und J.A. Cras, J. Organomet. Chem., 215 (1981) 201.
- 4 H.P.M.M. Ambrosius, Dissertation, Univ. Nijmegen, 1981; D.H.M.W. Thewissen, J.G. Noltes und J.J. Steggerda, Inorg. Chim. Acta, 51 (1981) 135.
- 5 K.G. Steinhäuser, W. Klein und R. Kramolowsky, J. Organomet. Chem., 109 (1981) 355.
- B. Just, W. Klein, J. Kopf, K.G. Steinhäuser und R. Kramolowsky, J. Organomet. Chem., 229 (1982)
 49.
- 7 U. Kunze, A. Antoniadis und M. Moll, J. Organomet. Chem., 215 (1981) 187.
- 8 A. Antoniadis, U. Kunze und M. Moll, J. Organomet. Chem., 235 (1982) 177.
- 9 A. Antoniadis, W. Hiller, U. Kunze, H. Schaal und J. Strähle, Z. Naturforsch. B, 37 (1982) 1289.
- 10 A. Antoniadis, A. Bruns und U. Kunze, Phosphorus Sulfur, 15 (1983) 317.
- 11 D. Rehder, R. Kramolowsky, K.G. Steinhauser, U. Kunze und A. Antoniadis, Inorg. Chim. Acta, 73 (1983) 243.
- 12 A. Antoniadis, Dissertation, Univ. Tubingen, 1982.
- 13 A. Bruns, W. Hiller und U. Kunze, Z. Naturforsch. B, 39 (1984) 14.
- 14 D. Coucouvanis, Progr. Inorg. Chem., 12 (1970) 182.
- 15 K.A. Jensen und P.H. Nielsen, Acta Chem. Scand., 20 (1966) 597.
- 16 D. Rehder, H.-Ch. Bechthold, A. Keçeci, H. Schmidt und M. Siewig, Z. Naturforsch. B, 37 (1982) 631.
- 17 R. Talay und D. Rehder, Inorg. Chim. Acta, 77 (1983) L175.
- 18 S. Dysart, I. Georgii und B.E. Mann, J. Organomet. Chem., 213 (1981) C10.
- 19 R.G. Kidd, Ann. Rep. NMR Spectroscopy, A, 10 (1980) 1.
- 20 D. Rehder in C.P. Poole (Herausg.), Magnetic Resonance Review, Vol. 9 (1984), Gordon and Breach. im Druck.
- 21 F. Calderazzo, E.A.C. Lucken und D.F. Williams, J. Chem. Soc., A, (1967) 154.
- 22 F. Näumann, D. Rehder und V. Pank, Inorg. Chim. Acta, 84 (1984) 117.
- 23 J.Y. LeGall, M.M. Kubicki und F.Y. Petillon, J. Organomet. Chem., 221 (1981) 287.
- 24 A.A. Koridze, N.M. Astakhova und P.V. Petrovskii, Izv. Akad. Nauk SSSR, Ser. Khim., (1982) 656.
- 25 F. Au-Yeung und D.R. Eaton, Inorg. Chim. Acta, 76 (1983) L141; Can. J. Chem., 61 (1983) 2431.
- 26 D. Rehder und J. Schmidt, Z. Naturforsch. B, 27 (1972) 625.
- 27 R. Talay und D. Rehder, J. Organomet. Chem., 262 (1984) 25.
- 28 K. Issleib und G. Harzfeld, Z. Anorg. Allg. Chem., 351 (1967) 18; U. Kunze und A. Antoniadis, Z. Anorg. Allg. Chem., 456 (1979) 155.
- 29 Handbuch der Präparativen Anorganischen Chemie (Herausg. G. Brauer), Band III, 3. Aufl., S. 1949, Ferd. Enke Verlag, Stuttgart 1981.